Variational Autoencoder
- Some control over distribution of learned Features
- Eg: Decoder as a generative model
- Constraint loss function and a given Probability D
- Eg: By loss func KL Divergence and prob distribution $$L(X) = n^{-1}\Sigma_i||x_i - D(E(\tilde x))||^2 + \lambda \cdot KL(f_i, d)$
- Use 2D unit distribution. 0 mean, unit variance
- Latent vector : f=μ+ϵe2logσ
- $$L(X) = n^{-1}\Sigma_i||x_i - D(E(\tilde x))||^2 + \frac{1}{2n}\Sigma_i(e^{log\sigma(x_i)} + \mu(x_i)^2 -1 -log(\sigma (x_i))$
- Encoder predicts mean and std E(xi)=(μ(xi),logσ(xi))