class SpacialTransformNew(nn.Module):
def __init__(self):
super(Net, self).__init__()
# Spatial [Transformer|[transformer](Transformer.md) localization-network
linear = nn.Linear(32, 3 * 2)
# Initialize the weights/bias with identity transformation
linear.weight.data.zero_()
linear.bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
self.compute_theta = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
Rearrange('b c h w -> b (c h w)', h=3, w=3),
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
linear,
Rearrange('b (row col) -> b row col', row=2, col=3),
)
# Spatial transformer network forward function
def stn(self, x):
grid = F.affine_grid(self.compute_theta(x), x.size())
return F.grid_sample(x, grid)