Shepard Interpolation
\begin{cases}\Sigma^{N}{i=1}w{i}(x)f_{i}& \text{if } d(x,x_{i}) \neq 0 \forall i\f_{i}& \text{if } d(x, x_{i})=0\
\end{cases}
- $w_{i}(x) = \frac{1}{d(x,x_{i})^{p}}$ - Neighborhood N determines points aka radius\begin{cases}\Sigma^{N}{i=1}w{i}(x)f_{i}& \text{if } d(x,x_{i}) \neq 0 \forall i\f_{i}& \text{if } d(x, x_{i})=0\
\end{cases}
- $w_{i}(x) = \frac{1}{d(x,x_{i})^{p}}$ - Neighborhood N determines points aka radius