GRConvNet

  • Generative Residual Convolutional Neural Network
  • Learning an object agnostic function to grasp objects
  • Uses multi modal input data (RGB + depth images).
  • Generates pixel-wise antipodal grasp configuration.
  • State-of-the-art performance (97% on Cornell dataset).
  • Use eye-to-hand camera configuration.
  • Sulabh Kumra, et al. “Antipodal robotic grasping using generative residual convolutional neural network.” IROS 2020.