fastai Interpretation
Classification Interpretation
interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix()
interp.plot_top_losses(5, nrows=1)
- Ordered by loss
- If predicted correctly but still shown, then low confidence
Cleaner
cleaner = ImageClassifierCleaner(learn)
cleaner
for idx in cleaner.delete(): cleaner.fns[idx].unlink()
for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat)
Get All Classes and Their Probabilities
def classify_image(img):
pred,idx,probs = learn.predict(img)
return dict(zip(categories, map(float,probs)))
classify_image(im)