πŸ“„ A survey on Image Data Augmentation for Deep Learning πŸ“„ Adding noise πŸ“„ Adversarial Spatial Dropout for Occlusion πŸ“„ Alleviating Class Imbalance with Data Augmentation πŸ“„ Attentive CutMix πŸ“„ AttributeMix πŸ“„ Augmentation-wise Weight Sharing strategy πŸ“„ Augmented Random Search πŸ“„ AugMix πŸ“„ Auto Augment πŸ“„ AutoAugment πŸ“„ Co-Mixup πŸ“„ Color Space Transformations πŸ“„ CowMask πŸ“„ Cropping πŸ“„ Cut and Delete πŸ“„ Cut and Mix πŸ“„ Cut, Paste and Learn πŸ“„ CutMix πŸ“„ Cutout πŸ“„ Data aug for spoken language πŸ“„ Data Augmentation with Curriculum Learning πŸ“„ Deep Generative Models πŸ“„ Fast AutoAugment πŸ“„ FeatMatch πŸ“„ Feature Augmentation πŸ“„ Feature Space Augmentation πŸ“„ Flipping πŸ“„ Fmix πŸ“„ GAN‐based Data Augmentation πŸ“„ Gaussian Distortion πŸ“„ Geometric Transformations πŸ“„ GridMask πŸ“„ Hide and Seek πŸ“„ Image Erasing πŸ“„ Image Manipulation πŸ“„ Image Mix πŸ“„ Image Mixing and Deletion πŸ“„ Intra-Class Part Swapping πŸ“„ KeepAugment πŸ“„ Kernel Filters πŸ“„ Manifold MixUp πŸ“„ ManifoldMix πŸ“„ Meta Learning Data Augmentations πŸ“„ Mixed Example πŸ“„ Moment Exchange πŸ“„ Neural Augmentation πŸ“„ Noise Injection πŸ“„ On the Importance of Visual Context for Data Augmentation in Scene Understanding πŸ“„ Population Based Augmentation πŸ“„ Puzzle Mix πŸ“„ Random Distortion πŸ“„ Random Erasing πŸ“„ ReMix πŸ“„ ResizeMix πŸ“„ RICAP πŸ“„ SaliencyMix πŸ“„ Sample Pairing πŸ“„ Shear πŸ“„ Skew Tilt πŸ“„ Smart Augmentation πŸ“„ SmoothMix πŸ“„ SMOTE πŸ“„ SnapMix πŸ“„ SpecAugment πŸ“„ Test-time Augmentation πŸ“„ Visual Context Augmentation